Search Results

Documents authored by Adler, Aviv


Document
Tatamibari Is NP-Complete

Authors: Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and Jayson Lynch

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an m x n grid of cells, where each cell possibly contains a clue among ⊞, ⊟, ◫. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exactly one clue, rectangles containing ⊞ are square, rectangles containing ⊟ are strictly longer horizontally than vertically, rectangles containing ◫ are strictly longer vertically than horizontally, and no four rectangles share a corner. We prove this puzzle NP-complete, establishing a Nikoli gap of 16 years. Along the way, we introduce a gadget framework for proving hardness of similar puzzles involving area coverage, and show that it applies to an existing NP-hardness proof for Spiral Galaxies. We also present a mathematical puzzle font for Tatamibari.

Cite as

Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and Jayson Lynch. Tatamibari Is NP-Complete. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{adler_et_al:LIPIcs.FUN.2021.1,
  author =	{Adler, Aviv and Bosboom, Jeffrey and Demaine, Erik D. and Demaine, Martin L. and Liu, Quanquan C. and Lynch, Jayson},
  title =	{{Tatamibari Is NP-Complete}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.1},
  URN =		{urn:nbn:de:0030-drops-127624},
  doi =		{10.4230/LIPIcs.FUN.2021.1},
  annote =	{Keywords: Nikoli puzzles, NP-hardness, rectangle covering}
}
Document
The Complexity of Hex and the Jordan Curve Theorem

Authors: Aviv Adler, Constantinos Daskalakis, and Erik D. Demaine

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
The Jordan curve theorem and Brouwer's fixed-point theorem are fundamental problems in topology. We study their computational relationship, showing that a stylized computational version of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to Brouwer’s theorem. As a corollary, our computational result implies that these two theorems directly imply each other mathematically, complementing Maehara's proof that Brouwer implies Jordan [Maehara, 1984]. We then turn to the combinatorial game of Hex which is related to Jordan's theorem, and where the existence of a winner can be used to show Brouwer's theorem [Gale,1979]. We establish that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting a reduction (due to Goldberg [Goldberg,2015]) from Quantified Boolean Formula (QBF). As this problem is analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer fixed point - and which is known to be PSPACE-complete [Goldberg/Papadimitriou/Savani, 2013] - we thereby establish a connection between Brouwer, Jordan and Hex higher in the complexity hierarchy.

Cite as

Aviv Adler, Constantinos Daskalakis, and Erik D. Demaine. The Complexity of Hex and the Jordan Curve Theorem. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{adler_et_al:LIPIcs.ICALP.2016.24,
  author =	{Adler, Aviv and Daskalakis, Constantinos and Demaine, Erik D.},
  title =	{{The Complexity of Hex and the Jordan Curve Theorem}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.24},
  URN =		{urn:nbn:de:0030-drops-63032},
  doi =		{10.4230/LIPIcs.ICALP.2016.24},
  annote =	{Keywords: Jordan, Brouwer, Hex, PPAD, PSPACE}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail